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Abstract 
For road condition assessment, participatory 

sensing has been proposed in literature utilizing a 
normal vehicle equipped with a dashboard camera. In 
such environment, the main technical challenge is not 
only the recognition performance on target classes 
such as cracks, but also the preparation of training 
and test datasets with high quality annotations. This 
study found that the annotation quality presents a 
unique problem in the performance test of 
participatory sensing-based road condition 
assessment. To address the problem, this study 
explores the adequacy of most commonly-used 
evaluation metric, the Intersection over Union (IoU), 
and suggest alternative metrics for road segmentation 
models in the context of participatory sensing. 
Experiments were conducted on the AIM crack 
dataset collected from urban road environments 
using dashboard cameras on normal vehicles. This 
study provides new insights into the importance of 
considering proper evaluation metrics in 
participatory sensing-based infrastructure 
monitoring. 
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1 Introduction 
The expenses for the maintenance and repair (M&R) 

of road networks in South Korea have increased 
significantly, recording $2 billion in 2015 to $2.9 billion 
in 2021 [1].  Previous research has shown that proactive 
M&R of road damages can significantly reduce M&R 
costs compared with reactive M&R [2]. To facilitate 
proactive M&R, it is essential to monitor road damages 
in a timely manner. However, limited budgets and 
monitoring resources in governmental agencies 

responsible for managing road infrastructure often make 
it difficult to identify road surface damages promptly. 

A previous study suggested an alternative monitoring 
method for road surfaces through participatory sensing, 
which leverages the data collection capabilities of 
citizens [3,4]. The previous study [3,4] utilized deep 
CNN to identify surface cracks, demonstrating the 
applicability of AI-based recognition systems. Most 
recent studies have used object detection models to find 
road surface damages [5]. However, to make data-
informed decisions in road M&R, damage information in 
a bounding box format could be insufficient as it cannot 
provide the length and shape of cracks, which are crucial 
for selecting proper treatment methods. 

Semantic segmentation models are advantageous for 
road M&R as they can recognize target classes, such as 
cracks, at the pixel-level. The segmentation results 
naturally facilitate the quantification of crack ratios in 
road sections, which can help make M&R decisions 
based on real-inspection data in a timely manner. 
However, participatory sensing environments presents a 
unique challenge in preparation of training and test 
datasets with accurate annotations due to poor image 
quality. Poor image quality is attributed to the low 
specification of dashboard camera image sensors, car 
motions, external lighting conditions, and weather effects. 
Therefore, annotated images often have erroneous 
annotations as shown in the right-hand side of Fig. 1. This 
problem is not only caused by human error, but also poor 
image quality with excessive noise as shown in Fig. 2. 
With such image quality, annotators are hard to 
differentiate cracks from road surfaces. Additionally, as 
shown in Fig. 1, the large field of view captured by a 
dashboard camera leads to objects in the distance 
appearing smaller and narrower, making the annotation 
task challenging. 

When it comes to making decisions for proactive M&R 
of road networks, critical information is the ratio and 
length of cracks in a road unit. Although there is a widely 
used road condition indicator such as the international 
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roughness index (IRI), proactive M&R activities do not 
need such level of details. Therefore, in the context of 
participatory sensing, the required level of details for 
road conditions includes the shape of cracks, not the 
width of them. Considering this, the current evaluation 
metric, the IoU, could mislead the interpretation of 
experimental results of semantic segmentation models, as 
it checks how accurately the model predicts crack regions 
in pixels. Fig. 1 illustrates this problem. From a road 
manager’s perspective, the prediction result is acceptable 
as it can provide the current status of road cracks, but the 
IoU score is low recording 0.28. Few pixel differences in 
location, thickness, and length between the predicted 
results and ground truth have little effect on road M&R 
judgment. 

Prediction Ground Truth 

Fig. 1. An example of the segmentation results (left) and the 
ground truth (right). The IoU Score is 0.28. 

To address this issue, this study investigates alternative 
performance evaluation metrics for participatory-sensing 
based road M&R decision making. The first evaluation 
method is composed of a morphological operation and a 
buffer method to yield performance scores for evaluation 
metrics such as ‘completeness’, ‘correctness’, and 
‘quality’. The buffer method is a simple matching 
procedure in which any portion of the prediction pixel 
within a defined pixel distance from the ground truth (GT) 
pixels is considered as a correct match. The second 
method, the keypoint matching method, evaluates the 
distance between the prediction and ground truth 
keypoints. The proposed evaluation metrics can be useful 
for road monitoring in the context of participatory 
sensing as the goal of crack recognition is identifying the 
ratio and length of cracks in certain road units to facilitate 
proactive M&R for road networks.  

Fig. 2. Poor image quality due to harsh imaging conditions 
using a dashboard camera in a moving car. 

2 Evaluation metrics for participatory 
sensing-based road monitoring 

New evaluation metrics for participatory sensing-based 
road monitoring are designed to achieve the following 
goals: 

⚫ The performance of road crack segmentation is
evaluated by the crack shape and length.

⚫ The segmentation results should be meaningful
to make decisions for proactive M&R of road
networks.

To achieve the goals, this study designs and examines 
two evaluation metrics. 

2.1 Shape-based evaluation of crack 
segmentation 

The first evaluation method is named as ‘shape-based 
evaluation of crack segmentation’, as it focuses on the 
integrity of crack shapes. That is, the metric evaluates 
whether a segmentation model correctly recognize the 
crack shapes, with the tolerance on the difference 
between the pixel thickness of prediction results and the 
ground truth. For example, if a prediction result is a 
straight crack line with the pixel width of 5 and length of 
100, and the ground truth is also a straight crack line with 
the pixel width of 1 and length of 100, then the metric 
should give 100% score.  

To realize the above idea, this study adopts CCQ 
metric which utilizes the concept of ‘completeness’, 
‘correctness’, ’quality’, and the buffer [6]:  

‘Completeness’ represents the proportion of the 
predicted cracks that lies within the buffer around the 
ground truth cracks. It is expressed as a percentage and 
defined by equation (1).  

‘Correctness’ refers to the proportion of the predicted 
cracks that lie within the buffer of the ground truth 
network, as quantified by equation (2).  

‘Quality’ of the result, which takes into account both 
completeness and correctness, is a measure of how well 
the final outcome has been achieved. It is quantified by 
equation (3) and it is equivalent to IoU.  

"F1 score" is the harmonic mean of completeness and 
correctness, and it is defined by equation (4).  

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =  
𝑇𝑃𝑏𝑢𝑓𝑓𝑒𝑟

𝑇𝑃𝑏𝑢𝑓𝑓𝑒𝑟 + 𝐹𝑁𝑏𝑢𝑓𝑓𝑒𝑟

(1) 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =
𝑇𝑃𝑏𝑢𝑓𝑓𝑒𝑟

𝑇𝑃𝑏𝑢𝑓𝑓𝑒𝑟 + 𝐹𝑃𝑏𝑢𝑓𝑓𝑒𝑟

(2) 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑇𝑃𝑏𝑢𝑓𝑓𝑒𝑟

𝑇𝑃𝑏𝑢𝑓𝑓𝑒𝑟 + 𝐹𝑃𝑏𝑢𝑓𝑓𝑒𝑟 + 𝐹𝑁𝑏𝑢𝑓𝑓𝑒𝑟

(3)



𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑛𝑒𝑠𝑠 ∗ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑛𝑒𝑠𝑠 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠

(4) 

The term "True Positive" (TP) refers to the correct 
identification of a crack segment by the model. A "False 
Positive" (FP) refers to a pixel that the model falsely 
identified as a crack, while a "False Negative" (FN) refers 
to a real crack pixel that the model failed to identify as 
such. 

Fig. 3 illustrates the buffer concept. Based on GT, it is 
defined as TP if the prediction is included in the buffer 
width, and FP if not. If GT is not included in the buffer 
width based on the prediction, it is defined as FN. In this 
study, the buffer width was defined as 5 pixels. In other 
words, if the predicted result is included within GT and 5 
pixels, it is determined that the prediction is successful. 

Fig. 3. Illustration of TP, FP, and FN of cracks using CCQ 
metric with the buffer 

Skeletonization is also applied to predicted and ground 
truth masks of cracks to examine the segmentation 
performance focusing only on the crack shape. 
Skeletonization is a morphological operation in image 
processing that aims to produce the skeletal structure or 
the thinned version of a binary image, preserving only the 
essential structures of the image. The goal of using 
skeletonization is to obtain a simplified representation of 
road cracks while retaining their shape and topology.  

2.2 Keypoint-based evaluation metric 
The second evaluation metric examines the keypoint 

matching between predictions and ground truth, to 
mitigate the sensitivity to pixel thickness. To this end, 
this study employed the GFTT (Good Features to Track) 
concept, introduced by Shi and Tomasi in 1994. Their 
objective was to determine which features are 
appropriate for tracking in a feature-based vision system, 
as the identification and tracking of good features is 
crucial for its operation (Shi and Tomasi 1994). By 

adopting this features, the shape-based evaluation is 
possible for crack segmentation results. The GFTT 
detector was originally designed to extract features such 
as corner points, similar to the key point extraction 
method of Harris and Stephens [5]. The coordinates of 
the keypoints were obtained from the segmentation 
results and ground truth images. If a keypoint of the 
segmentation results is within 5 pixels of a keypoint of 
the ground truth, it was considered a True Positive 
(𝑇𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛). If a keypoint of the ground truth is within 
5 pixels of a keypoint of the segmentation results, it was 
considered a True Positive (𝑇𝑃𝐺𝑇). Prediction, GT, and 
Keypoint scores are defined by equation (5), (6), (7). 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒

=  
𝑇𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

# 𝑜𝑓 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

(5) 

𝐺𝑇 𝑠𝑐𝑜𝑟𝑒 =  
𝑇𝑃𝐺𝑇

# 𝑜𝑓 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐺𝑇 (6) 

𝐾𝑒𝑦𝑝𝑜𝑖𝑛𝑡 𝑠𝑐𝑜𝑟𝑒

=  
2 × 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 × 𝐺𝑇 𝑠𝑐𝑜𝑟𝑒

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 + 𝐺𝑇 𝑠𝑐𝑜𝑟𝑒

(7) 

3 Experiment 
The experiments were conducted on the AIM crack 

dataset [3], collected by multiple normal vehicles 
equipped with dashboard cameras. The dataset consisted 
of 327, 100, and 100 images for training, validation, and 
test, respectively. The dataset provides polygon 
annotations for road cracks. DeepLabv3+ [8] and FPN [9] 
were used as a segmentation model. In the 
implementation, DeepLabv3+ has been trained for 50 
epochs with the encoder part of mit_b5, which was 
SegFormer [10] pre-trained on ImageNet. The mini-
batch had 6 images, the learning rate of 0.0001 before 25 
epochs and 0.00001 after, and the optimizer of Adam 
were set to train the model. For comparison, FPN was 
trained for 50 epochs with the encoder part of 
Efficientnet_b5[11], which was pre-trained on ImageNet. 
The mini-batch had 16 images, the learning rate of 
0.0001 before 25 epochs and 0.00001 after, and the 
optimizer of Adam were set to train the model. 

3.1 CCQ metric experiment 
To count TP, FP, and FN, this study produced the crack 

masks on the test images (see examples in Figs. 1, 8 and 
Table 1). As shown in Fig 4, the location and shape of the 
cracks were accurately predicted. However, the presence 
of FP suggests that the model’s prediction of crack 
thickness is wider than the ground truth. This result yields 
a low IoU score of 0.49. In Fig 5, for the same reason, 



IoU score was only 0.29. As the correct prediction of 
crack thickness is less critical in making proactive M&R 
decisions for road networks, the shape-based evaluation 
using the CCQ score and the skeletonization was 
conducted, as shown in Fig 6, 7. The CCQ score provides 
insight into the model's ability to produce results that are 
similar to human cognitive evaluation in the context of 
participatory sensing, by using the buffer method. 

        IoU : 0.49 

Completeness:0.9, Correctness:0.89, Quality:0.81 

Fig. 4. Segmentation mask visualization of IoU (top) and 
the proposed metrics (bottom) using DeepLabV3+. TP is 

blue, FP is green, FN is red. 

        IoU : 0.29 

Completeness:0.95, Correctness:0.62, Quality:0.60 
Fig. 5. Segmentation masks produced by FPN, with the 

IoU (top) and proposed metrics (bottom). TP is blue, FP is 
green, FN is red. 

 To further reduce errors due to the crack thickness 
difference, this study performed skeletonization on both 
prediction and ground truth masks, and measured CCQ 
again. Skeletonization is a critical preprocessing step for 
crack segmentation models, as it can mitigate errors 
arising from differences in prediction and ground truth 
crack thickness. For instance, if a crack is labeled with a 
thickness of one pixel in the ground truth, an accurate 
prediction of the crack's location with a thickness of four 
pixels would yield an IoU score of only 0.25. By 
skeletonizing both prediction and ground truth mask, the 
thickness is reduced to one pixel(Fig 8), thereby enabling 
better correspondence with the ground truth and 
improving the accuracy of the segmentation model. 
Skeletonization was performed using the Python package 
called scikit-image. Using this package, the 
skeletonization algorithm iteratively removes peripheral 
pixels of the image data, while preserving the 
connectivity of the objects of interest. This operation is 

performed iteratively until the desired level of a one-pixel 
thick skeletonization is achieved.  

IoU : 0.48 

Completeness:0.8, Correctness:0.62, Quality:0.54 
Fig. 6. Segmentation mask visualization of IoU (top) and 

the CCQ metric after skeletonization (bottom) using 
DeepLabV3+. TP is blue, FP is green, FN is red. 

IoU : 0.36

Completeness:0.87, Correctness:0.91, Quality:0.8 

Fig. 7. Segmentation masks produced by FPN, with the 
IoU (top) and the CCQ metric after skeletonization 

(bottom). TP is blue, FP is green, FN is red. 

Fig. 8. Example of Skeletonization 

3.2 Keypoint metric experiment 
Key point extraction was performed on both the 

prediction and ground truth masks, and the extracted key 
points can be seen in Fig. 9. Key points were generated 
throughout the crack, and matching was performed based 
on the distance between the key points of the prediction 
and ground truth. Key points within 5 pixels were 
assumed to be matched, so the score can be adjusted to 
compensate for the position and thickness difference of 
the cracks in the prediction and ground truth mask. 



Prediction Ground Truth 

Fig. 9. An example of keypoint matching results. 
(IoU = 0.33, keypoint matching score = 0.6) 

Prediction Ground Truth 

Prediction Ground Truth 

Prediction Ground Truth 

Prediction Ground Truth 

Fig. 10. Visualization of the predicted masks versus the 
ground truth masks. Despite correct predictions in crack 

shapes, the IoU score is low as shown in Table 1. 

Table 1. Model performance evaluation in each metric 
for Fig. 10  

Row IoU Comp. Corr. Qual. Keypoint 
First 0.33 0.92 0.73 0.81 0.6 

Second 0.35 0.84 0.78 0.81 0.79 
Third 0.24 0.69 0.69 0.69 0.69 
Fourth 0.32 0.88 0.89 0.88 0.68 

Table 2. Model evaluation 

S* IoU Comp. Corr. Qual. Keypoint 

Score 
(Deep 

LabV3+)

0.22 0.71 0.54 0.43 0.44 

✓ 0.06 0.73 0.55 0.44 0.45 

S* IoU Comp. Corr. Qual. Keypoint 

Score 
(FPN) 

0.24 0.74 0.67 0.53 0.44 

✓ 0.07 0.69 0.73 0.53 0.45 

S*: Skeletonization 

4 Limitation & Future study 
In this study, we present a metric that is capable of 

assessing the predictive capabilities of a road crack 
segmentation model in participatory sensing 
environments. The effectiveness of this metric was 
demonstrated through the experiments. However, the 
prediction results for fatigue cracks, as shown in Fig. 11, 
is relatively difficult to handle using the proposed metric. 
Although the prediction result seems plausible to the 
naked eye, evaluating the model’s performance using the 
CCQ metric with and without skeletonization was not 
successful in the case of fatigue cracks, as shown in Fig. 
13 and Table 3. 

Fig. 11. Example of fatigue crack 

Future research is needed to develop a suitable approach 
for evaluating the model’s performance in fatigue cracks. 
The proposed metric can be applied exclusively to non-
fatigue cracks by using object detection models which 
identify fatigue cracks. If suitable evaluation metrics are 



applied for each type of crack, it will be possible to more 
accurately evaluate the model’s predictive ability. 

Ground Truth 

Prediction 
Fig. 12. The ground truth and the prediction results were 
overlaid on the raw images. 

Fig. 13. IoU (Top Left), CCQ (Top Right), CCQ after 
Skeletonization (Bottom). TP is blue, FP is green, FN is red. 

Table 3. Model performance evaluation for fatigue cracks 
shown in Fig. 13 

S* IoU Comp. Corr. Qual. 

Score 
0.26 0.62 0.53 0.4 

✓ 0.05 0.49 0.56 0.35 

5 Conclusion 
This study investigated alternative segmentation 

performance evaluation metrics for road crack 
segmentation in the context of participatory sensing. As 
inaccurate annotations are inevitable due to poor image 
quality of a dashboard camera, the proposed evaluation 
metric allow users to examine the segmentation 
performance with a criterion that the predicted masks are 
useful for decision-making in proactive M&R for road 
networks. The experimental results imply the use of IoU 
score is disadvantageous in participatory sensing, as it is 
highly sensitive to the width of cracks rather than the 
predicted crack shape which can provide the crack ratio 
and length information. Rather than IoU, the CCQ score 
or keypoint based assessment is more preferable. This 
study highlights the importance of using appropriate 
performance evaluation metric to assess road crack 
segmentation models focusing on crack shapes, thereby 
facilitating the accurate performance evaluation for 
participatory sensing-based road monitoring results. 
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